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Abstract 

Road safety interventions directed at a population such as mandatory helmet legislation (MHL) and 

seat belt laws are often assessed by interrupted time series (ITS) methods. Such interventions are 

often controversial since the pre- and post-intervention periods are not randomised making causal 

inference difficult. It is possible for changes in the time series of interest to be due to unmeasured 

confounders and not the intervention. For example, it is often argued by those opposing MHL that 

the decline in bicycle related head injuries following this intervention could be due to declines in 

cycling ridership and not a safety benefit. The inclusion of a comparative series in ITS designs is a 

potential way to account for unmeasured confounding; however, statistically rigorous criteria for 

selecting a comparator are yet to be developed. To that end, this paper examines the use of 

empirical Bayes methods as a means for detecting unmeasured confounding and for choosing the 

best comparative time series. ITS using empirical Bayes consists of estimating a post-intervention 

trajectory, or counterfactual, using the pre-intervention data. The trajectory is then compared to the 

post-intervention data for deviations from the counterfactual. These methods will be applied to 

NSW hospitalisation data around the mandatory helmet law as a demonstration. 

Introduction 

Population-based road safety interventions such as mandatory helmet legislation and seat belt laws 

are often controversial as they limit personal freedoms and are often difficult to assess. When an 

intervention is made effective, it is important to assess whether there is a clear benefit to the 

intended target of the intervention. However, causal inference, whereby changes in a dependent 

variable are directly attributable to an independent variable, is difficult in these situations due to the 

lack of randomisation of the pre- and post-intervention periods.  

There exist examples in the literature in which a road safety intervention has been successful or 

unsuccessful depending on the analysis. When assessing seat belt laws in the UK, Harvey and 

Durbin (1986) demonstrated a significant decline in front vehicle occupants killed or seriously 

injured compared to rear seat passengers. Adams (2007), on the other hand, found little difference 

in injury between various European countries with and without seat belt laws in the 1970’s. With 

regards to mandatory helmet legislation (MHL), Walter et al. (2011) demonstrated a 29% reduction 

in bicycle related head injury immediately following legislation relative to limb injuries. Robinson 

(2007), in her work critical of helmet legislation, found little difference in the percentage of head 

injuries between cyclists and pedestrians around the time of the Victorian MHL. 

Interrupted time series (ITS) methods are often used to assess population-based interventions. Using 

sequentially ordered data, an ITS analysis consists of estimating the pre- and post-intervention time 

series for the outcome of interest which are then compared for differences. If the intervention had 

an immediate impact, there will be a change in the overall mean (or level) of the pre- and post-

intervention series; whereas, a gradual impact will change the overall trend (or slope) of the series. 

For example, a large increase in helmet wearing coinciding with MHL would be expected to lead to 

a level change in head injury while increased cycling infrastructure expenditures would be expected 

to lead to a change in slope in all cycling injuries. 
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Simple ITS designs are limited due to unmeasured, time-dependent confounding. With regards to 

helmet legislation, for example, opponents have argued MHL is a major cycling deterrent, increases 

risky behaviour and makes the cycling environment less safe overall (Robinson, 2007). Note that it 

is possible for these factors to affect the time series differentially. So, changes in bicycle-related 

head injury could be due to factors other than increased helmet wearing.  

It is highly recommended in the literature to include a non-equivalent, no-treatment control group 

time series to deal with threats to internal validity such as unmeasured, time-dependent confounding 

(Cook & Campbell, 1979; Shadish, Cook & Campbell, 2002). Further, the NHMRC considers 

comparative interrupted time series (CITS) designs to be as strong as case-control and cohort study 

designs (NHMRC, 2009). However, these are qualitative recommendations and do not appear to be 

fully justified in the scientific literature. For example, if estimating changes in cycling head injuries 

relative to MHL, will a comparison with pedestrian head injuries properly account for unmeasured, 

time dependent confounding? Additionally, given the choice between multiple comparators, e.g., 

cycling limb injuries or pedestrian head injuries, which one is best? 

Some recommended criteria for choosing a comparative time series has been proposed in the 

literature. Linden and Adams (2011) have recommended the pre-intervention primary and 

comparative time series should be similar. Walter et al. (2013) chose arm injuries over leg injuries 

as comparators to head injuries since the estimated head/arm within-month correlation was greater 

than that for head/leg. 

In addition to the recommendations in the literature, this paper will explore the use of empirical 

Bayes interrupted time series analysis (French & Heagerty, 2008) as an analytic method for (1) 

checking if a comparative time series has accounted for unmeasured confounding and (2) choosing 

between competing comparative time series.  

Mandatory Helmet Legislation in NSW 

Mandatory helmet legislation (MHL) for bicyclists in NSW came into effect on 1 January 1991 for 

adults (>15 years) and on 1 July 1991 for children. Since helmets protect the head, MHL will be 

associated with a decline in bicycle-related head injuries, if successful. However, it has been argued 

that MHL is associated with declines in cycling, increased risk to cyclists and riskier behaviour 

among helmeted cyclists. These potential confounders are time dependent factors and, therefore, a 

comparative time series subjected to the same factors would strengthen an assessment of MHL.   

Previous research has utilised arm and leg injuries (Povey, Frith & Graham, 1999; Walter et al., 

2011), and pedestrian head injuries (Hendrie et al., 1999) as comparators to bicycle related head 

injuries.  

The NSW Admitted Patients Data Collection (APDC) is a census of hospitalisations in NSW since 

1988/89. In the eighteen month periods before and after MHL (36 months total), adult cycling 

injuries to the head, arm and leg, and head injuries for pedestrians were identified using 

International Classification of Diseases, 9th Revision, Clinical Modification (ICD 9-CM) as 

described in Walter et al. (2011). Non-hospitalisable cycling injuries to the limbs that are 

concurrent with head injuries could change with MHL due to less head injuries. That is, less severe 

limb injuries that do not require hospitalisation could decline with MHL due to fewer hospitalisable 

head injuries. To account for this potential bias, cyclists with arm or leg injuries with concurrent 

head injury were only counted as a head injury.  

As a sensitivity analysis, monthly beer production in Australia over the same period was used as a 

potential comparator (ABS, 1995). This comparative time series was chosen as it is readily 
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available over the same time period and is unrelated to cycling. However, it is not known whether 

this is genuinely the case as, for example, both could be independently related to economic changes.  

Statistical methods for interrupted time series 

An interrupted time series model must account for various features of sequentially collected data 

including overall trend, seasonal/cyclical effects, time-dependent covariates and the intervention 

effect. For a single time series ty , these effects can be decomposed as 

∑
=

=++++=
k

j

ttjtjttt Ttwxy
1

,,1   ,)log( Kελδγµ  

where tµ  is the trend, tγ  is the seasonal component, jtx  is the thj  explanatory variable at time t  

and jδ  is its coefficient, tw  is an indicator variable for the pre- and post-intervention periods, λ  is 

the intervention effect and tε  is the irregular component (Harvey and Durbin, 1986). Let τ=t  be 

the intervention point, so that 0=tw  during the pre-intervention period (i.e., τ<t ) and 1=tw  

during the post-intervention period (i.e., τ>t ). These components can be stochastic to account for 

temporal dependence or deterministic with one random error term tε . In the absence of temporal 

dependence, this model simplifies to a linear model or generalised linear model depending on the 

distributional assumption of ty . The focus here is on injury, i.e., count data, which often follows a 

Poisson distribution, thus the log-linear representation. 

When assessing population-based interventions, potential explanatory variables are not always 

available. For example, although all bicycle-related hospitalisations are recorded in NSW since 

mid-year 1988, estimates of cycling ridership do not exist until yearly exercise surveys began in 

2001 (ABS, 2001). So, with regards to assessing MHL and many other population-based 

interventions, the time-dependent process ∑ =
=

k

j jtjt x
1
δη  is often not estimated. 

For demonstrative purposes, the remainder of this manuscript will consider only deterministic time 

series and the interested reader is directed to Harvey (1996) and Commandeur et al. (2013) for a 

more in-depth treatment of intervention time series using this decomposition. That is, models will 

be estimated herein using Poisson methods for segmented regression. 

Using a segmented linear model approach, a single interrupted time series can be written as  

εαββββ +++++= ∑
=

k

j

jT TIITy
1

3210)log(  

where T  is a continuous time measure with 0=T  corresponding to the intervention point, I  is a 

pre- and post-intervention indicator, jα  is the cyclical effect for 1,,1 += kj K  cyclical components 

and ε  is a random error term. When modelling seasonal effects, for example, 3=k  and the jα  are 

measures of seasonal departures from a referent category. 

Using the model parameterisation above, the coefficients 2β  and 3β  are readily interpreted, 

respectively, as the intervention effects change in level and slope. A graphical representation of 

these effects is given in Figure 1. The term counterfactual represents the trajectory of the time 

series in the post-intervention period when there is no intervention effect. So, the coefficients 2β  

and 3β  are measures of deviation in the time series following an intervention.  
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(a) (b)  

Figure 1. Graphical illustration of intervention effects for a single interrupted time series 

design for (a) change in level and (b) change in slope 

As noted above, changes in a time series could be due to other factors, so that 2β  and 3β  are biased 

intervention effects if the time series is subjected to unmeasured confounding. In these instances, 

the use of a comparative interrupted time series (CITS) approach is recommended. In a CITS 

design, another time series subjected to the same unmeasured confounding factors as the primary 

series yet not subjected to the intervention is chosen. That is, the unmeasured confounding 

component for the primary time series ∑ =
=

k

j

p

jt

p

j

p

t x
1
δη  is identical or similar to that of the 

comparator ∑ =
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l
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The single ITS model using segmented regression can be extended as  

TICICTCTICITyE T 76543210))(log( ββββββββ +++++++=  

where C  is an indicator function for the primary and comparative time series. This model can be 

decomposed into two models for the primary (i.e, 1=C ) and comparative (i.e, 0=C ) time series 

respectively as 

( )( ) ( )( )TIIyE
p

T 74516230))(log( ββββββββ +++++++=  

and 
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c

T 4120))(log( ββββ +++= . 

Using this modelling framework, ( ) ( )TIIyyE
c

T

p

T 7563))/(log( ββββ +++= . It is clear then that the 

coefficients 6β  and 7β  are measures of change in level and slope, respectively, in the primary time 

series relative to the comparator. 

This model can be used to assess the usefulness of the comparative time series using the 

recommendations by Linden and Adams (2011) and Walter et al. (2013). First, the primary and 

comparative time series are identical in the pre-intervention period precisely when 03 =β  and 

05 =β , so a statistically significant result would indicate the two series are dissimilar before the 

intervention. However, in practice, it is unlikely two time series would be identical and the purpose 

of the comparator is to account for time-dependent confounding; the comparison of time-varying 

components 05 =β  is the only one of importance. 
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The within-time period correlation 
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where p

tε  and c

tε  are the errors for the decomposed primary and comparative time series 

respectively. Larger values of φ  indicate greater correlation between two time series and can easily 

be estimated using generalised estimating equations within the above modelling framework. As 

noted above, Walter et al (2011, 2013) used estimates of φ  to choose between arm and leg injuries 

as potential comparators to head injuries. 

Empirical Bayes ITS 

Empirical Bayes for interrupted time series (EB-ITS) uses the conceptual framework of a Bayesian 

analysis with frequentist estimation methods. The primary components of an EB-ITS analysis is (1) 

the pre-intervention data is used to estimate a “prior” model, (2) this model is extrapolated over the 

post-intervention time period to construct a trajectory or counterfactual and (3) the post-intervention 

observations are analysed relative to the counterfactual (French & Heagerty, 2008). 

The pre-intervention model can be represented by 

TCCTyE
EB

T 3210))(log( αααα +++=  

where 0<T . Using the estimated coefficients from this model, the counterfactual for the post-

intervention period, i.e., 0>T , is )ˆˆˆˆexp(ˆ
3210 TCCTy

EB

T αααα +++= . A sample of counterfactual 

residuals are then computed for each post-intervention observation ty  as 

)ˆlog()log( EB

ttt yy −=∆ . 

The intervention is associated with a change in the primary time series relative to the comparative 

series when the average counterfactual residual t∆  significantly differs from 0, i.e., 0=∆t  signifies 

no effect since the post-intervention data does not significantly differ from the counterfactual.  

EB-ITS to assess unmeasured confounding 

As with CITS designs, an EB-ITS analysis assumes the primary and comparative time series have 

similar unmeasured, time-dependent components, although EB-ITS makes this assumption on the 

pre-intervention analysis only. In cases when c

t

p

t ηη ≠  in the post-intervention time period, the 

counterfactual residuals will have a biased time dependent component, so the model residuals will 

not behave in a random fashion. In other words, a temporal trend in the observed t∆  suggests a poor 

choice in the comparative time series. 

Results 

It is known that cycling exposure varies over the course of a year; however, the cyclical pattern of 

cycling in NSW is unknown. With that in mind, three single ITS models for cycling head injuries 

were fit with monthly, seasonal and winter indicators. The model with an indicator for winter (June, 

July and August in Australia) resulted in the best Akaike information criterion and was thus 

retained for the remaining analyses. 
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Log-linear models over the entire pre- and post-intervention periods were fit for cycling head 

injuries using cycling arm injuries, cycling leg injuries, pedestrian head injuries and beer production 

as potential comparators. The scale parameter was estimated by the deviance to account for any 

overdispersion. Estimates for differences in time varying components and within-month correlation 

for each model are given in Table 1. The beer production time series performs best versus the other 

comparators as it has the least significant time-dependent comparison in the pre-intervention period 

and the greatest within-month correlation with the head injury time series. 

Table 1. Model estimates for pre-intervention differences in time varying components (standard 

error) and within-month correlation. 

 Arm  Leg Head (Peds) Beer 

5β̂  -0.008 (0.015) 0.023 (0.021) -0.008 (0.020) 0.003 (0.015) 

φ̂  0.026 0.096 -0.063 0.185 

 

Next, using pre-intervention data, log-linear models were estimated using bicycle-related head 

injuries as the primary outcome along with bicycle-related arm injuries, bicycle-related leg injuries, 

pedestrian-related head injuries and beer production. The results are given in Table 2. With the 

exception of arm injuries, head injuries significantly differed with the other time series in terms of 

overall magnitude measured by 2α̂ . Additionally, the winter indicator was statistically significant 

for each model with the exception of head injuries to pedestrians. 

Table 2. Untransformed log-linear model estimates (standard error) for bicycle-related head 

hospitalisations for eighteen months prior to mandatory helmet legislation  

 Arm  Leg Head (Peds) Beer 

0α̂  -13.656 (0.172) -13.725 (0.181) -12.532 (0.114) -11.203 (0.063) 

1α̂  0.001 (0.014) -0.020 (0.017) -0.002 (0.011) 0.002 (0.006) 

2α̂  0.167 (0.181) 0.792 (0.221) -0.459 (0.182) -1.766 (0.163) 

3α̂  -0.008 (0.018) 0.023 (0.021) 0.008 (0.018) 0.004 (0.016) 

4α̂  (winter) -0.564 (0.120) -0.491 (0.132) -0.078 (0.102) -0.213 (0.069) 

 

For each model, trajectories were then extrapolated over the post-law period and the counterfactual 

residuals t∆  were computed using the post-intervention data for the primary and comparative time 

series. The difference in the primary and comparative counterfactual residuals, 

)ˆ/ˆlog()/log( cEB

t

pEB

t

c

t

p

t

c

t

p

t yyyy
−−−=∆−∆ , 

can be interpreted as a comparison of the logarithm of the observed and expected ratio of the 

primary and comparative time series. There is a clear analytic benefit to comparing the ratio of 

injuries since two outcomes are collapsed into one. The results from linear models were fit to the 

observed differences in the counterfactual residuals are given in Table 3. Residual plots from these 

models are given in Figure 2. 

In each case, the slope terms are not statistically significant indicating similar post-law time-varying 

components between head injury and each comparator. The intercepts were statistically significant, 

with the exception of leg injuries which were marginally insignificant, indicating an abrupt change 

in head injury with the helmet law relative to each comparator. Curiously, beer production as a 

comparator resulted in the largest intervention effect.  
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Table 3. Linear regression results for difference (standard error) in counterfactual residuals over 

the post-intervention period  

 Arm  Leg Head (Peds) Beer 

Intercept -0.263 (0.138) -0.263 (0.157) -0.383 (0.190) -0.494 (0.165) 

Slope 0.010 (0.013) -0.025 (0.015) 0.001 (0.018) 0.010 (0.016) 

 

 

Figure 2. Linear model residual plots from difference in counterfactual residual 

There is systematic variability in the residual plots using cycling leg injuries, pedestrian head and 

beer production as comparators, suggesting the model assumptions, and therefore statistical 

inferences, are invalid. Further, the systematic pattern is similar for head injuries for pedestrians and 

beer production as comparators. On the other hand, arm injuries as a comparator results in a random 

residual pattern suggesting valid statistical results. 

Discussion 

This paper set out to explore various criteria for selecting a comparator within an interrupted time 

series analysis. With regards to assessing mandatory helmet legislation, we are primarily concerned 

with head injuries and potential comparators should be a related process not subjected to the 

intervention. With that in mind, we chose other, common cycling injuries (arm and leg), head 

injuries for another vulnerable road user group (head injuries for pedestrians) and a seemingly 

unrelated time series (beer production) as a sensitivity analysis. 
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The criteria used were (1) similar pre-intervention trend, (2) within-month correlation, and (3) lack 

of systematic variability from EB analysis. Based on those criteria, the results were decidedly 

mixed. All potential comparators did not significantly differ from head injuries in the eighteen 

month pre-intervention period. The within-month correlation with head injures was inconsequential 

with the exception of beer production, while EB using arm injuries as a comparator resulted in a 

non-systematic residual pattern. Using these criteria, cycling arm injuries and beer production 

performed better than the others; however, the within-month correlation between head injuries and 

beer production was unexpected. 

The lack of correlation between head injuries with either arm or leg injuries runs counter to 

previous analyses (Walter et al., 2013). However, although sourced from the same database, case 

definitions were not identical. First, due to the staggered nature of helmet laws for adults and 

children, we only considered adults in the present study. Secondly, hospitalisations with concurrent 

injuries to the head, arm and/or leg were considered separate injuries in the previous study, while 

the present analysis only considered arm or leg injuries that were without a concurrent head injury. 

Lastly, cyclical adjustments in the original study were made using the X11 method which was done 

prior to analysis, whereas this adjustment was made within the modelling framework.  

Further analyses were performed to investigate the influence of concurrent injuries on the estimates 

of within-month correlation. The data was subsetted to include each head/arm/leg injury (All 

injuries) and arm/leg injuries with concurrent head injuries were coded as head injuries (Arm/leg 

only) or as arm/leg injuries (Head only). Further, separate models were fit with and without an 

indicator for winter months. The results are given in Table 4. 

Table 4. Estimates of within-month correlation for different subsets of concurrent injuries and 

the inclusion/exclusion of a winter indicator. 

 Arm  Leg 

 Winter Term No Winter Term Winter Term No Winter Term 

All injuries 0.027 0.222 0.137 0.257 

Arm/leg only 0.026 0.217 0.096 0.228 

Head only 0.034 0.234 0.136 0.260 

 

The inclusion/exclusion of concurrent injuries has little effect on the within-month correlation; 

however, the inclusion/exclusion of an indicator for winter months has a large effect on the 

correlation. The results indicate that much of the correlation between head injuries and other 

cycling injuries is due to cyclical patterns which can be modelled explicitly. 

Although it is unclear which comparator better fits the data, each model estimates a benefit to the 

helmet law of varying degrees. Cycling arm injuries as a comparator results in the smallest 

estimated benefit, 23.01263.0 −=−−
e , while beer production estimated the greatest benefit, 

39.01494.0 −=−−
e .  

It is possible these criteria only help to identify a potential (as shown by all series in this study 

leading to consistent conclusions), but are not sufficient to select a comparator that gives an 

accurate assessment of the intervention. Hence, further criteria may need to be developed for this 

purpose. In the absence of such criteria, a conservative approach is to opt for smallest estimated 

effect among the comparators satisfying the three established criteria. 

This study has a few limitations. Although the data used was taken from a census of all NSW 

hospitalisations, other serious cycling injuries may have only presented to emergency departments 

and are thus not represented here. Additionally, little is known about cycling exposure around the 
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helmet law in NSW. The Roads and Traffic Authority did commission a series of surveys around 

this time; however, surveys were only taken over three out of 36 possible months (Walker, 1992). 

The counts of cyclists from these surveys increased from October 1990 to April 1991 followed by a 

decline in April 1992 to approximately the pre-law total in 1990. Lastly, the motivating example 

uses 36 total time points (pre- and post-law) and the results may be more clear with a longer time 

series. This is a limitation that cannot be overcome for this example due to the lack pre-law 

hospitalisation data in NSW. 
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